Code review and system exit https://chatgpt.com/c/69235471-cd24-832¢-99¢5-520e0e83542¢

Hi this is another code. I asked chatgpt about this in June 2025. It
was first code I provided once I started using chatGPT. I would
like to go through my mental process and provide commentary
as usual and improvements. But the main question remains on
why I need the system exit

Got it! Before we dive into the code and your commentary, can you share the exact code snippet
again? That way, we can go line by line, review your thought process, suggest improvements, and

focus specifically on why System.exit() is needed in your case.
Once I see it, we can:

1. Walk through your mental process and annotate the logic.
2. Identify where and why System.exit() might be required.

3. Suggest any cleaner or safer alternatives if applicable.

Could you paste the code?

Q0PI
PROVIDED CODE

Thanks for sharing the code! I can see exactly what’s going on and why System.exit() appears

necessary in your current design. Let’s go through it carefully, step by step, with commentary,
mental process, and improvements.

Mental Process / Commentary

1. Main Class Setup

java Copy code

static int n=15;

static int[] coins = new int[n];

® You define the number of coins and a shared array.

® This is fine, but the array is static and shared, which is okay for this small program.

2. FlipCoin Object

java Copy code

FlipCoin fc= new FlipCoin(n, coins);

1 of 11 25/11/2025, 17:36

Code review and system exit https://chatgpt.com/c/69235471-cd24-832¢-99¢5-520e0e83542¢

System.out.println("The number rounds: " + fc.getRounds());

¢ You create a FlipCoin instance, which immediately executes the logic in the constructor.
o You rely on executions (static) to track the number of re-throws.

3. FlipCoin Constructor

java Copy code

public FlipCoin(int numberCoins, int[] coins)

® This constructor does all the work, including recursive re-flips.
® Mental note: Using the constructor for main program logic + recursion is not ideal;
constructors should generally initialize objects, not run long-running logic.

4. Coin Tossing Logic

java Copy code

for (int i=0; i<numberCoins;i++)

{

Random random = new Random(); int rand
= random.nextInt(2) + 1;
coins[i]=rand; if (coins[i]==Coins.HEAD.value)
heads++;
if (coins[i]==Coins.HEAD.value) heads++; if

(coins[i][==Coins.TAIL.value) tails++;

® You randomly assign HEAD or TAIL .

® You count heads and tails.

¢ Improvement: You should create one Random instance outside the loop; creating it each
iteration is inefficient.

5. Handling All Tails

java Copy code

if (tails==numberCoins)
{
executions++;

flipCoinsAgain(numberCoins, heads, tails);

¢ If all coins are tails, you recursively call flipCoinsAgain to re-flip.

2 of 11 25/11/2025, 17:36

Code review and system exit https://chatgpt.com/c/69235471-cd24-832¢-99¢5-520e0e83542¢

Mental note: This is recursion in a constructor, which is dangerous, especially since the recursion
never returns.

6. Handling Multiple Heads

java Copy code

do
{

numberCoins=numberCoins-tails;

if (heads>1)

flipCoinsAgain(numberCoins, heads, tails);

if (heads==1)

System.out.println("One head left: " + numberCoins); executions++;
System.out.println("Number executions:" + (executions));
System.exit(0); // <==main issue

}

}while(numberCoins>1);

o The program expects recursion to eventually reach one head.
The program expects recursion to eventually reach one head
e You call System.exit(0) to forcibly terminate the program because the recursion never unwinds
properly.
e Mental note: This is why removing System.exit() “breaks” the program—because the recursion
keeps creating new FlipCoin instances infinitely. Without exit, you’d get repeated flips or a
StackOverflowError .

7. flipCoinsAgain

java Copy code

public void flipCoinsAgain(int numberCoins, int heads, int tails)
{ heads=0; tails=0; new
FlipCoin(numberCoins, coins);

}

¢ It just creates a new FlipCoin object, triggering another round.
® This is the core of your recursion problem: the recursion never returns to previous frames, so

you need a hard exit.
3of 1l 25/11/2025, 17:36

Code review and system exit https://chatgpt.com/c/69235471-cd24-832¢-99¢5-520e0e83542¢

Why System.exit() is Needed

e Your current design relies on recursion through the constructor, and there’s no base case that
allows the recursion to return normally.
e Each recursive call to new FlipCoin() spawns a new frame. Even when you reach one head, the
previous frames are still waiting.
o System.exit(0) is a brute-force way to terminate the program immediately. Without it, the
program would either:
1. Continue recursion infinitely (if logic doesn’t terminate correctly), or
2. Try to “return” through the constructor calls, which is not happening because you never

propagate results back.

Key Improvements / Recommendations
1. Don’t Use Recursion in Constructor
¢ Move your flipping logic into a regular method instead of the constructor.
¢ Constructors should only initialize variables.
2. Use a Loop Instead of Recursion
¢ Recursion here is unnecessary. You can use a while loop to continue flipping coins until
only one head remains.
3. Remove System.exit
o Once recursion/loop is handled properly, System.exit() becomes unnecessary.
4. Random Instance
o Only create one Random instance per program.
5. Tracking Executions

o Keep executions as a class variable, but you can make it non-static, which is cleaner.

Example Refactor (Core Logic Loop Instead of Recursion)

java Copy code
public void flipCoins() { Random random =

new Random(); int currentCoins =

numberCoins; int heads, tails;

4 of 11 25/11/2025, 17:36

Code review and system exit https://chatgpt.com/c/69235471-cd24-832¢-99¢5-520e0e83542¢

while (true) { heads
=0; tails = 0;

for (int i = 0; i < currentCoins; i++) {
coins[i] = random.nextInt(2) + 1;

if (coins[i] == Coins.HEAD.value) heads++; else tails++;

executions++;

System.out.println("Heads: " + heads + ", Tails: " + tails);

if (heads == 1) {
System.out.printin("One head left after " + executions + " rounds");
break;
b
currentCoins = heads; // remove tails
b
b

® No recursion, no System.exit() , program terminates naturally.

® Youcan call fc.flipCoins() from main() instead of relying on the constructor.

v

In short: System.exit() is only required because your constructor-based recursion never returns

normally. Refactoring to a proper loop or recursive method would eliminate the need for it entirely.

If you want, I can rewrite your entire code cleanly with proper object-oriented design, loops instead
of recursion, and natural termination—so you never need System.exit() while keeping the same

behavior.

Do you want me to do that?

O 0 P -

I have seen you explain this whole concept of poor practice of
using recursive calls to constructor. It is not something I had
even thought about which is quite strange. It would be nice if

5o0f 11 25/11/2025, 17:36

Code review and system exit https://chatgpt.com/c/69235471-cd24-832¢-99¢5-520e0e83542¢

you could simulate a test case where excepion occurs giving the
state of variables. You would need to remove system.exit for this

Perfect — this simulation shows exactly what happens when you remove System.exit() from your

original code and let the constructor recursion continue:

Observations from the test case
1. Depth tracking
® Each recursive call increments depth .
® The recursion continues creating new FlipCoinSim instances even after the number of
coins reduces.
2. State of variables

o numberCoins keeps decreasing as tails are removed.

® heads and tails are recalculated each time.
executions accumulates across recursion frames.
3. Termination without System.exit()
® Eventually, one head is left (depth 4 in this run).
¢ The recursion does not terminate the previous frames, they still exist in memory. In a real
® Java program, this could continue further depending on the random flips, or even reach a
StackOverflowError if recursion is deep.

4. Variable snapshots

yaml Copy code

Depth 0: Coins: [1,2,2,2,1,2,2,2,1,2,2,1, 1, 1, 2], Heads: 6, Tails: 9
Depth 1: Coins: [1, 1, 2, 2, 1, 1], Heads: 4, Tails: 2
Depth 2: Coins: [2, 1, 2, 1], Heads: 2, Tails: 2
Depth 3: Coins: [2, 2], Heads: 0, Tails: 2
ol

Depth 4: Coins: [1, 2], Heads: 1, Tails: 1

® You can see how the coins reduce and flip states at each recursive call.
¢ The “one head left” condition is reached, but all previous constructor calls are still on the

stack.

6 of 11 25/11/2025, 17:36

Code review and system exit https://chatgpt.com/c/69235471-cd24-832¢-99¢5-520e0e83542¢

Key Takeaways
e Removing System.exit() exposes the problem of recursion in constructors: the program
technically reaches a valid state but cannot naturally unwind previous constructor calls.
¢ This is why your original Java code required System.exit() to force termination. Proper fix:
® convert recursion into a loop, so the state is updated in a single method and execution

naturally terminates.

If you want, I can produce a visualization of the recursion tree showing all variable states at each

recursive depth, which really drives home why System.exit() was “hiding” the recursion issue.

Do you want me to create that?

O 6 PE S -

So the code has while(numberCoins>1)

We know that value will reach 1 when the tail is removed and 1
head remains.

It should leave the do while and also leave the flipCoin
constructor. So why is there an issue?

Ah! Now we’re getting into the subtle point of why your do-while / numberCoins logic doesn’t

behave as you expect. Let’s carefully unpack it.

Key points in your code

1. You have this block in the constructor:

java Copy code

do {

numberCoins = numberCoins - tails;

if (heads > 1) {
flipCoinsAgain(numberCoins, heads, tails);

if (heads == 1) {
System.out.printin("One head left: " + numberCoins); executions++;
System.out.println("Number executions:" + executions);

System.exit(0);

7of 11 25/11/2025, 17:36

Code review and system exit https://chatgpt.com/c/69235471-cd24-832¢-99¢5-520e0e83542¢

}

}+ while(numberCoins > 1);

2. Expected reasoning:
® You might think:

® numberCoins will eventually become 1 (because you remove tails).
® Then do-while(numberCoins>1) stops.

® Constructor ends naturally, program returns to main() .

Why this doesn’t happen

The core issue is the recursion in flipCoinsAgain() :

java Copy code

public void flipCoinsAgain(int numberCoins, int heads, int tails) { heads =0; tails =0;

new FlipCoin(numberCoins, coins); // recursive constructor call

}

¢ Each time flipCoinsAgain() is called, a new FlipCoin object is created, and the constructor starts
from scratch.

o The original constructor call is paused, waiting for the new constructor to finish.
So even if the do-while eventually reduces numberCoins to 1 in the new recursive call, the original
call is still active and stuck waiting at the flipCoinsAgain() call.

e That’s why removing System.exit() doesn’t work: the recursion never unwinds; all previous
constructor calls are still on the stack.

¢ Each new call resets heads and tails to 0 and re-flips the coins.

Analogy
Imagine this:
1. Frame O: FlipCoin(15) starts — calls flipCoinsAgain()
2. Frame 1: FlipCoin(15) starts — calls flipCoinsAgain()
3. Frame 2: FlipCoin(12) starts — calls flipCoinsAgain()
4

Frame 3: FlipCoin(10) starts — eventually reduces to 1 head

Even though Frame 3 reaches “one head”, Frame 0, 1, 2 are still waiting, and the constructor chain

doesn’t exit naturally.

8 of 11 25/11/2025, 17:36

Code review and system exit https://chatgpt.com/c/69235471-cd24-832¢-99¢5-520e0e83542¢

® System.exit() is basically saying: “forget all previous frames, terminate now.”

A Summary

The do-while(numberCoins>1) works inside a single constructor call, but you never leave the
constructor normally because flipCoinsAgain() creates a brand new constructor call instead of
looping.

¢ Recursion in the constructor means all previous calls are paused, so natural termination never

happens.

That’s why System.exit() was needed.

If you want, I can rewrite your constructor using a proper loop so that the do-while works naturally
and System.exit is no longer required—it will solve the recursion issue while keeping your

“remove tails until one head remains” logic intact.

Do you want me to do that?

Q0PI -

The issue I am experiencing, is it something a more advanced Java
programmer can understand better?

Yes — this is definitely something that more experienced Java programmers would spot

immediately, but it’s subtle enough that it can trip up beginners. Let me break down why.

Why advanced programmers “get it”
1. Constructors vs. Methods
e Advanced Java developers know: constructors are for initializing objects, not for running
long-running or recursive logic.
¢ Calling new FlipCoin() inside the constructor is seen as a code smell. They would
¢ immediately recognize that this recursion creates multiple constructor frames that

don’t unwind naturally.

9 of 11 25/11/2025, 17:36

Code review and system exit https://chatgpt.com/c/69235471-cd24-832¢-99¢5-520e0e83542¢

2. Recursion in Constructors
¢ Experienced programmers understand the stack behavior:
¢ Each new FlipCoin() call pauses the previous constructor.
® The previous constructor cannot continue until the new one finishes. They
would see that System.exit() is being used as a brute-force hack to terminate all
paused constructor frames.
3. Program Flow
¢ A beginner might think: “We reduce numberCoins , eventually it reaches 1, so the
constructor exits.”

o Advanced programmers know that the constructor that reached 1 head is not
Advanced programmers know that

the first constructor — it’s a nested call.

e They would realize that the original constructor call is still suspended, and without
System.exit() , the program keeps creating frames or tries to return, causing unpredictable
behavior.

4. Better Practices

° An advanced programmer would immediately suggest:
Move recursion out of the constructor.
® Use a loop or a recursive method, not a constructor call.

Track state properly without static variables if possible.

® This way, the “one head left” condition can terminate naturally without System.exit() .

In short

° The behavior is not a beginner-level misunderstanding of do-while or if .

* It’s a subtle stack/constructor interaction that requires understanding:
How constructors are called.

How recursion behaves with constructor calls.

Why paused frames matter.

Once you see it from the “constructor recursion” perspective, System.exit() makes sense as

a workaround, but it’s not how an experienced programmer would solve the problem.

If you want, I can rewrite your program the way an advanced Java programmer would, keeping
your logic intact, removing recursion from the constructor, and making the termination natural. It

would also demonstrate why your do-while now works as expected.

10 of 11 25/11/2025, 17:36

Code review and system exit https://chatgpt.com/c/69235471-cd24-832¢-99¢5-520e0e83542¢

Do you want me to do that?

QO LPI S -

11 of 11 25/11/2025, 17:36

