
Code review and system exit https://chatgpt.com/c/69235471-cd24-832c-99e5-520e0e83542d

1 of 11 25/11/2025, 17:36

Hi this is another code. I asked chatgpt about this in June 2025. It

was first code I provided once I started using chatGPT. I would

like to go through my mental process and provide commentary

as usual and improvements. But the main question remains on

why I need the system exit

Got it! Before we dive into the code and your commentary, can you share the exact code snippet

again? That way, we can go line by line, review your thought process, suggest improvements, and

focus specifically on why System.exit() is needed in your case.

Once I see it, we can:

1. Walk through your mental process and annotate the logic.

2. Identify where and why System.exit() might be required.

3. Suggest any cleaner or safer alternatives if applicable.

Could you paste the code?

PROVIDED CODE

Thanks for sharing the code! I can see exactly what’s going on and why System.exit() appears

necessary in your current design. Let’s go through it carefully, step by step, with commentary,

mental process, and improvements.

Mental Process / Commentary

1. Main Class Setup

 java Copy code

static int n=15;

static int[] coins = new int[n];

You define the number of coins and a shared array.

This is fine, but the array is static and shared, which is okay for this small program.

2. FlipCoin Object

 java Copy code

FlipCoin fc= new FlipCoin(n, coins);

Code review and system exit https://chatgpt.com/c/69235471-cd24-832c-99e5-520e0e83542d

2 of 11 25/11/2025, 17:36

System.out.println("The number rounds: " + fc.getRounds());

 You create a FlipCoin instance, which immediately executes the logic in the constructor.

 You rely on executions (static) to track the number of re-throws.

3. FlipCoin Constructor

 java Copy code

public FlipCoin(int numberCoins, int[] coins)

This constructor does all the work, including recursive re-flips.

Mental note: Using the constructor for main program logic + recursion is not ideal;

constructors should generally initialize objects, not run long-running logic.

4. Coin Tossing Logic

 java Copy code

for (int i=0; i<numberCoins;i++)

{

Random random = new Random(); int rand

= random.nextInt(2) + 1;

 coins[i]=rand; if (coins[i]==Coins.HEAD.value)

heads++;

if (coins[i]==Coins.HEAD.value) heads++; if

(coins[i]==Coins.TAIL.value) tails++;

}

You randomly assign HEAD or TAIL .

You count heads and tails.

Improvement: You should create one Random instance outside the loop; creating it each

iteration is inefficient.

5. Handling All Tails

 java Copy code

if (tails==numberCoins)

{

 executions++;

 flipCoinsAgain(numberCoins, heads, tails);

}

If all coins are tails, you recursively call flipCoinsAgain to re-flip.

Code review and system exit https://chatgpt.com/c/69235471-cd24-832c-99e5-520e0e83542d

3 of 11 25/11/2025, 17:36

Mental note: This is recursion in a constructor, which is dangerous, especially since the recursion

never returns.

6. Handling Multiple Heads

 java Copy code

do

{

 numberCoins=numberCoins-tails;

if (heads>1)

 {

 flipCoinsAgain(numberCoins, heads, tails);

 }

if (heads==1)

 {

 System.out.println("One head left: " + numberCoins); executions++;

 System.out.println("Number executions:" + (executions));

 System.exit(0); // <== main issue

 }

}while(numberCoins>1);

 The program expects recursion to eventually reach one head.

The program expects recursion to eventually reach one head

 You call System.exit(0) to forcibly terminate the program because the recursion never unwinds

properly.

 Mental note: This is why removing System.exit() “breaks” the program—because the recursion

keeps creating new FlipCoin instances infinitely. Without exit, you’d get repeated flips or a

StackOverflowError .

7. flipCoinsAgain

 java Copy code

public void flipCoinsAgain(int numberCoins, int heads, int tails)

{ heads=0; tails=0; new

FlipCoin(numberCoins, coins);

}

It just creates a new FlipCoin object, triggering another round.

This is the core of your recursion problem: the recursion never returns to previous frames, so

you need a hard exit.

Code review and system exit https://chatgpt.com/c/69235471-cd24-832c-99e5-520e0e83542d

4 of 11 25/11/2025, 17:36

Why System.exit() is Needed

 Your current design relies on recursion through the constructor, and there’s no base case that

allows the recursion to return normally.

 Each recursive call to new FlipCoin() spawns a new frame. Even when you reach one head, the

previous frames are still waiting.

 System.exit(0) is a brute-force way to terminate the program immediately. Without it, the

program would either:

1. Continue recursion infinitely (if logic doesn’t terminate correctly), or

2. Try to “return” through the constructor calls, which is not happening because you never

propagate results back.

Key Improvements / Recommendations

1. Don’t Use Recursion in Constructor

Move your flipping logic into a regular method instead of the constructor.

Constructors should only initialize variables.

2. Use a Loop Instead of Recursion

 Recursion here is unnecessary. You can use a while loop to continue flipping coins until

only one head remains.

3. Remove System.exit

 Once recursion/loop is handled properly, System.exit() becomes unnecessary.

4. Random Instance

 Only create one Random instance per program.

5. Tracking Executions

 Keep executions as a class variable, but you can make it non-static, which is cleaner.

Example Refactor (Core Logic Loop Instead of Recursion)

 java Copy code

public void flipCoins() { Random random =

new Random(); int currentCoins =

numberCoins; int heads, tails;

Code review and system exit https://chatgpt.com/c/69235471-cd24-832c-99e5-520e0e83542d

5 of 11 25/11/2025, 17:36

while (true) { heads

= 0; tails = 0;

for (int i = 0; i < currentCoins; i++) {

 coins[i] = random.nextInt(2) + 1;

if (coins[i] == Coins.HEAD.value) heads++; else tails++;

 }

 executions++;

 System.out.println("Heads: " + heads + ", Tails: " + tails);

if (heads == 1) {

 System.out.println("One head left after " + executions + " rounds");

break;

}

 currentCoins = heads; // remove tails

 }

}

In short: System.exit() is only required because your constructor-based recursion never returns

normally. Refactoring to a proper loop or recursive method would eliminate the need for it entirely.

If you want, I can rewrite your entire code cleanly with proper object-oriented design, loops instead

of recursion, and natural termination—so you never need System.exit() while keeping the same

behavior.

Do you want me to do that?

I have seen you explain this whole concept of poor practice of

using recursive calls to constructor. It is not something I had

even thought about which is quite strange. It would be nice if

You can call

Code review and system exit https://chatgpt.com/c/69235471-cd24-832c-99e5-520e0e83542d

6 of 11 25/11/2025, 17:36

you could simulate a test case where excepion occurs giving the

state of variables. You would need to remove system.exit for this

Perfect — this simulation shows exactly what happens when you remove System.exit() from your

original code and let the constructor recursion continue:

Observations from the test case

1. Depth tracking

Each recursive call increments depth .

The recursion continues creating new FlipCoinSim instances even after the number of

coins reduces.

2. State of variables

 numberCoins keeps decreasing as tails are removed.

heads and tails are recalculated each time.

executions accumulates across recursion frames.

3. Termination without System.exit()

Eventually, one head is left (depth 4 in this run).

The recursion does not terminate the previous frames, they still exist in memory. In a real

Java program, this could continue further depending on the random flips, or even reach a

StackOverflowError if recursion is deep.

4. Variable snapshots

 yaml Copy code

Depth 0: Coins: [1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 1, 1, 2], Heads: 6, Tails: 9

Depth 1: Coins: [1, 1, 2, 2, 1, 1], Heads: 4, Tails: 2

Depth 2: Coins: [2, 1, 2, 1], Heads: 2, Tails: 2

Depth 3: Coins: [2, 2], Heads: 0, Tails: 2

Depth 4: Coins: [1, 2], Heads: 1, Tails: 1

You can see how the coins reduce and flip states at each recursive call.

The “one head left” condition is reached, but all previous constructor calls are still on the

stack.

Code review and system exit https://chatgpt.com/c/69235471-cd24-832c-99e5-520e0e83542d

7 of 11 25/11/2025, 17:36

Key Takeaways

 Removing System.exit() exposes the problem of recursion in constructors: the program

technically reaches a valid state but cannot naturally unwind previous constructor calls.

This is why your original Java code required System.exit() to force termination. Proper fix:

convert recursion into a loop, so the state is updated in a single method and execution

naturally terminates.

If you want, I can produce a visualization of the recursion tree showing all variable states at each

recursive depth, which really drives home why System.exit() was “hiding” the recursion issue.

Do you want me to create that?

So the code has while(numberCoins>1)

We know that value will reach 1 when the tail is removed and 1

head remains.

It should leave the do while and also leave the flipCoin

constructor. So why is there an issue?

Ah! Now we’re getting into the subtle point of why your do-while / numberCoins logic doesn’t

behave as you expect. Let’s carefully unpack it.

Key points in your code

1. You have this block in the constructor:

 java Copy code

do {

 numberCoins = numberCoins - tails;

if (heads > 1) {

 flipCoinsAgain(numberCoins, heads, tails);

 }

if (heads == 1) {

 System.out.println("One head left: " + numberCoins); executions++;

 System.out.println("Number executions:" + executions);

 System.exit(0);

Code review and system exit https://chatgpt.com/c/69235471-cd24-832c-99e5-520e0e83542d

8 of 11 25/11/2025, 17:36

 }

} while(numberCoins > 1);

2. Expected reasoning:

Why this doesn’t happen

The core issue is the recursion in flipCoinsAgain() :

 java Copy code

public void flipCoinsAgain(int numberCoins, int heads, int tails) { heads = 0; tails = 0;

new FlipCoin(numberCoins, coins); // recursive constructor call

}

 Each time flipCoinsAgain() is called, a new FlipCoin object is created, and the constructor starts

from scratch.

 The original constructor call is paused, waiting for the new constructor to finish.

So even if the do-while eventually reduces numberCoins to 1 in the new recursive call, the original

call is still active and stuck waiting at the flipCoinsAgain() call.

 That’s why removing System.exit() doesn’t work: the recursion never unwinds; all previous

constructor calls are still on the stack.

Each new call resets heads and tails to 0 and re-flips the coins.

Analogy

Imagine this:

1. Frame 0: FlipCoin(15) starts → calls flipCoinsAgain()

2. Frame 1: FlipCoin(15) starts → calls flipCoinsAgain()

3. Frame 2: FlipCoin(12) starts → calls flipCoinsAgain()

4. Frame 3: FlipCoin(10) starts → eventually reduces to 1 head

Even though Frame 3 reaches “one head”, Frame 0, 1, 2 are still waiting, and the constructor chain

doesn’t exit naturally.

Code review and system exit https://chatgpt.com/c/69235471-cd24-832c-99e5-520e0e83542d

9 of 11 25/11/2025, 17:36

The do-while(numberCoins>1) works inside a single constructor call, but you never leave the

constructor normally because flipCoinsAgain() creates a brand new constructor call instead of

looping.

 Recursion in the constructor means all previous calls are paused, so natural termination never

happens.

If you want, I can rewrite your constructor using a proper loop so that the do-while works naturally

and System.exit is no longer required—it will solve the recursion issue while keeping your

“remove tails until one head remains” logic intact.

Do you want me to do that?

The issue I am experiencing, is it something a more advanced Java

programmer can understand better?

Yes — this is definitely something that more experienced Java programmers would spot

immediately, but it’s subtle enough that it can trip up beginners. Let me break down why.

Why advanced programmers “get it”

1. Constructors vs. Methods

 Advanced Java developers know: constructors are for initializing objects, not for running

long-running or recursive logic.

Calling new FlipCoin() inside the constructor is seen as a code smell. They would

immediately recognize that this recursion creates multiple constructor frames that

don’t unwind naturally.

Code review and system exit https://chatgpt.com/c/69235471-cd24-832c-99e5-520e0e83542d

10 of 11 25/11/2025, 17:36

2. Recursion in Constructors

Experienced programmers understand the stack behavior:

Each new FlipCoin() call pauses the previous constructor.

The previous constructor cannot continue until the new one finishes. They

would see that System.exit() is being used as a brute-force hack to terminate all

paused constructor frames.

3. Program Flow

 A beginner might think: “We reduce numberCoins , eventually it reaches 1, so the

constructor exits.”

 Advanced programmers know that the constructor that reached 1 head is not

Advanced programmers know that

the first constructor — it’s a nested call.

 They would realize that the original constructor call is still suspended, and without

System.exit() , the program keeps creating frames or tries to return, causing unpredictable

behavior.

4. Better Practices

An advanced programmer would immediately suggest:

Move recursion out of the constructor.

Use a loop or a recursive method, not a constructor call.

Track state properly without static variables if possible.

This way, the “one head left” condition can terminate naturally without System.exit() .

In short

The behavior is not a beginner-level misunderstanding of do-while or if .

It’s a subtle stack/constructor interaction that requires understanding:

How constructors are called.

How recursion behaves with constructor calls.

Why paused frames matter.

Once you see it from the “constructor recursion” perspective, System.exit() makes sense as

a workaround, but it’s not how an experienced programmer would solve the problem.

If you want, I can rewrite your program the way an advanced Java programmer would, keeping

your logic intact, removing recursion from the constructor, and making the termination natural. It

would also demonstrate why your do-while now works as expected.

Code review and system exit https://chatgpt.com/c/69235471-cd24-832c-99e5-520e0e83542d

11 of 11 25/11/2025, 17:36

Do you want me to do that?

